Principles of Compiler Construction (Mmaipy

n7R279MIpPn)

Dr Mayer Goldberg
October 20, 2018

Contents

1 Course Objectives 1
P Homework Guidelines 2
B Detailed Syllabus 2
U Final Gradd 5
5 Academic Integrity] 7
6 References 7

Course number: 201-1-2061

Mandatory for undergraduate CS and SE students
Credits: 4.5

Course site: http://www.cs.bgu.ac.il/~comp191/

Prerequisites: Principle of Programming Languages (202-1-2051), Au-
tomata €& Formal Languages (202-1-2011), Architecture (202-1-3041)

1 Course Objectives

Gain additional insight into programming languages, building on what
students have learned in the Principles of Programming Languages
course.


http://www.cs.bgu.ac.il/~comp191/

Understand the major components of the compiler: Syntactic analysis,
semantic analysis, code generation, and the run-time environment.
Gain hands-on experience in crafting these components.

Learn about compiler optimizations: What compilers do to generate
code that is faster, shorter, and performs better. Implement many of
these optimizations, and see how they improve the code.

Be able to apply information & skills learned in the compilers course to
other areas in computer science where syntactic and semantic analysis,
code generation, and translation are needed.

2 Homework Guidelines

The programming assignments may be submitted singly or in pairs.
You may not work in larger groups.

All assignment will be graded using ocaml, Chez Scheme, nasm, and
gcc on the Linux image on the departmental lab computers only.

3 Detailed Syllabus

3.1

Introduction to Compiler Construction

References: 1, 3, 4, 5

3.2

The algebraic relationship between compilation & interpretation.
Cross-compilation, boot strapping a compiler, de-compilation.

The stages of the compiler: What work is done in each, what kinds of
errors can and cannot be detected at each, the basic algorithms that
are implemented at each stage.

Dynamic vs statically-typed languages. Early binding vs late bind-
ing. The information available to the compiler for translation, error
detection, and optimizations.

Scanning & Parsing Theory

References: 1, 2, 5

Scanner: DFA, NDFA, NDFA with e-transitions



e Parsing: Top-down, recursive descent parsers, parsing combinators,
bottom-up parsers

e Hand-coding various parsers
o Using parser-generation tools in C & Java
e Macro expansion: Syntactic transformations, reduction to core forms
in the language, variables, meta-variables and syntactic hygiene.
3.3 Programming Languagues

References: 2, 3

e Functional vs Imperative programming: How change & side-effects are
understood & modeled in the functional view of programming.

e Parameter-passing mechanisms: Call-by-value, call-by-reference, call-
by-sharing/object, call-by-name, call-by-need. Features of the various
parameter-passing mechanisms, their motivation, history & implemen-
tation.

o Scope & its implementation: Dynamic scope (deep binding, shallow
binding), lexical scope. Dynamic scope and the implementation of
exception handling.

e The structure of the lexical environment, and the implications for data
sharing & side effects.

e Object-oriented vs functional programming Languagues. The struc-
ture of the closure compared to that of the object. Mapping of lambda-
expressions to objects. The virtual method table.

e Monads & monadic programming.

3.4 Continuation-Passing Style (CPS)

References: 2, 5

o CPS as a programming technique (multiple return values, multiple
continuations, co-routines, implementation of threads.

e CPS as an approach to writing a compiler: CPS, defunctionalization
of the continuation, stack machine.



3.5

CPS as an intermediate language for the compiler: Optimizations that
are simpler in CPS.

Semantic Analysis

References: 3, 4, 5

3.6

Lexical addressing, deBruijn numbering
Identification of tail calls

Boxing, data indirection, and motion from the stack to the heap: A
comparison between quasi-functional programming languages (Scheme,
LISP) and object oriented programming languages (Java).

Code Generation

References: 1, 2, 3, 4

3.7

Layout of Scheme objects in memory. Run-time type information.
Comparison with the situation in object-oriented programming lan-
guages.

An overview of the proof of correctness of the compiler, and how it is
constructed along with the code generator.

Optimization of tail calls

Code generation to native x86 instructions for the various expressions
in our language

The primitive procedures & support code that are provided with the
compiler

The Run-Time Environment

References: 2, 3, 4

The top level: n-LISP — value cells, function cells, property cells, etc.
Dynamic memory management:

— Reference counting

— Garbage collection: mark & sweep, stop & copy, generational
garbage collection

Namespaces, modules, and their implementation



3.8 Compiler Optimizations
References: 1, 2, 3, and notes
e The tail-recursion & tail-call optimizations
e Loop optimizations & transformations
e Array optimizations
e Strength reduction optimizations
¢ Dead-code removal, write-after-write optimizations

e Common Sub-expression Elimination, both as a high-level and low-
level optimization

e Optimizations for super-pipelined and parallel architectures

4 Final Grade

Your final grade is computed as follows. Your grade is made up of two
components:

1. The Exam component
2. The Project component

It is possible to accumulate extra credit (bonus points) in both compo-
nents, for up to a total of 113 points in total. While your final grade will not
exceed 100 points, you can use these bonus points to compensate for lower
grades on various deliverables.

4.1 The exam component

This component is worth 60 points. You have two options to fulfill this
component:

e Option A: You take the final exam, and your grade makes up to 60
points of your final grade.

e Option B: You take both the midterm and the final exam.

— The midterm grade will count up to 15 points of your final grade.



— The final exam will count up to 50 points out of your final grade.

The total points with this option is 65 points of your final grade.
This is our way of encouraging you to attend the midterm, which is
otherwise voluntary.

If you are unable to attend the midterm for any reason, just pick option
A.

4.2 The project component

This component is worth 40 points.
e The online quizzes count up to 5 points of your final grade
e The final project will count up to 35 points of your final grade
e You will have 3-4 homework assignments:

— If you submit an assignment on time, you can get a bonus of 2
points

— If you don’t have time to submit a specific assignment, just skip
it, and move on

— Regardless of whether or not you submit the assignments in a
timely manner, you will need to submit a final project, on time,
in order to pass the course

The final project is large and time-consuming, and you are given enough
time during which to complete it. Nevertheless, we would like to encourage
you to start working on the assignment early on, in a paced and timely
manner. Therefore, the first 3 milestones of the final project have been split
up into the first 3 assignments: Working on each of these 3 assignments
means you shall be working on your final project; No extra work is involved.
So basically, by submitting the first 3 assignments on time, you shall be
earning up to 6 bonus points towards your final grade. The fourth, and last
assignment will involve implementing various optimizations, and will not be
a part of your final project. If you submit that assignment on time, you can
accumulate up to 2 more bonus points towards your final grade.

If you choose option B of the exam component and submit the homework
assignments on time, you can accumulate up to a theoretical total of 111 or
113 points, depending on whether there is a fourth assignment. Your grade
shall not exceed 100, but 11 or 13 bonus points can make up for lost points



on various deliverables. This is our way of encouraging you to take the
midterm, start working early on, and work in a paced and timely manner.

The mandatory deliverables in this course are the final project and the
final exam. This means that you cannot pass this course if you fail any of
these components.

Curving aims at setting the grades on a common scale. Curving in this
course is optional, and at the sole discretion of the instructors, and can be
done either up or down. The curving function need not be constant or linear,
but it will be monotonic over the relevant interval.

5 Academic Integrity

The code you submit must have been written by yourself or your partner.
It cannot come from other course members, friends, past students, or the
internet. If you are caught having submitted code of which you or your
partner are not the authors, or if you make your code available to other
students, we will file a complaint against you with the disciplinary board
(nynwn nTw).

6 References

1. Textbook: Modern Compiler Design, by D. Grune, H. Bal, C. Ja-
cobs, K. Langendoen

2. LISP in Small Pieces, by Christian Queinnec
3. The Anatomy of LISP, by John Allen

4. The Structure & Interpretation of Computer Programs, by Harold
Abelson, et al.

5. Essentials of Programming Languages, by Daniel P. Friedman, Mitchell
Wand, Christopher T. Haynes



	Course Objectives
	Homework Guidelines
	Detailed Syllabus
	Final Grade
	Academic Integrity
	References

